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Abstract

This thesis proposes the numerical model to investigate the impact of the radiation

effects in the presence of heat generation/absorption and the magnetic field on the

MHD stagnation point flow past a radially stretching sheet using the Casson and

Carreau nanofluids. The non-linear partial differential equations describing the

proposed flow problem are reduced to a set of ordinary differential equations via

suitable similarity transformations. The shooting method has been used to obtain

the numerical results with the help of the computational software MATLAB. The

effects of pertinent flow parameters on the non-dimensional velocity, temperature

and concentration profiles are presented in tables and graphs. From the results, it

has been remarked that the heat transfer rate escalates for the larger values of the

radiation paramter for the Casson nanofluid. A similar finding has been observed

for the Carreau nanofluid.
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Chapter 1

Introduction

1.1 Background

Fluid serves as the basic necessity of life and owing to its significance in the natu-

ral and technological processes, scientists have been discovering the various facts

and figures about the fluid flow. Fluid dynamics characterizes the flow of fluids

and how forces influence them. It illustrates the methodology of understanding

the evolution of stars, meteorological phenomena, marine currents as well as the

blood circulation. Archimedes was a Greek mathematician, who first examined

the statics and buoyancy of the fluid and formulated the Archimedes principle,

which was considered to be the first contribution in the area of fluid mechanics.

Rapid investigation on this subject began in the fifteenth century. Some crucial

engineering applications of fluid dynamics comprise of oil pipelines, rocket engines,

air conditioning systems and wind turbines. Casson fluid, being non-Newtonian

in nature, exhibits behavior of elastic solids. When stress rate is zero, the Cas-

son fluid can be regarded as a shear thinning liquid, showing an infinite viscosity

1
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whereas the viscosity drops to zero as the stress rate approaches to an infinite

value [1]. Jam, tomato ketchup, honey and concentrated fruit syrups are some

familiar examples of the Casson fluid. The Casson fluid has been implemented in

the preparation of printing ink, silicon suspensions and polymers [2]. During the

past few years, a vast range of experiments and investigations have been carried

out using the Casson fluid due to its enormous applications in the scientific and en-

gineering domains. Dash et al. [1] examined the flow using a homogeneous porous

medium inside a pipe for the Casson fluid. The stagnation point flow for mixed

convection and convective boundary conditions using the Casson fluid was ana-

lyzed by Hayat et al. [3]. Further to this, Mukhopadhyay et al. [4] investigated

the flow past an unsteady stretching surface using the Casson fluid. Moreover,

different aspects of such flows using the Casson fluid are presented in the recent

studies [5–9]. Furthermore, other types of fluids have been used for describing the

different flow problems, which are not non-Newtonian in nature and are regarded

as Newtonian fluids. The Carreau fluid can be regarded as a generalization of the

Newtonian fluid. The analysis of the peristalic flow [10–13] using Carreau fluid

has been the field of focus of numerous researchers because of its usefulness in the

scientific and technological fields, neurological and cancer treatment and Phsiol-

ogy. Furthermore, the stagnation point MHD flow in the light of thermal radiation

for Carreau fluid has been discussed by Suneetha et al. [14]. Moreover, numerous

significant aspects of the different flow problems using Carreau fluid have been

discussed by a number of authors [15–18].

In the past few years, the problem involving stagnation point flow has acquired

the considerable attention of many research scientists. Owing to its significant
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properties, the study of flow nearby a stagnation point past a stretching/shrink-

ing sheet has a wide range of practical applications, for instance, cooling process

of atomic reactors and electronic equipment, the layouts of thrust bearings, and

several hydrodynamics processes. Moreover, the analysis of the magnetohydrody-

namic flow is highly significant in the fluid dynamics owing to the reason that the

impact of the magnetic field on the viscous flow using a fluid having electrically

conducting properties has played a key role in several commercial production, for

instance in the refinement of crude oil, glass and paper production, manufactur-

ing of magnetic materials, geophysics and MHD electrical power generation. The

MHD factor has a fundamental role to play in controlling the cooling rate and for

achieving the desired quality of the product. Mahapatra [19] analyzed the flow

nearby a stagnation point by taking into consideration the heat transfer past a

stretching sheet. Furthermore, Nazar et al. [20] discussed the stagnation point

flow over a stretching sheet using a micropolar fluid. Several researchers have

contributed in the study of the stagnation point MHD flow in the light of various

significant effects [21–25].

Moreover, an analysis of the flow using the radially stretching surfaces for the

nanofluids has many significant applications in the industrial sectors, for instance,

drawing of plastic films, manufacturing of glass, production of paper and refining

of crude oil. In addition to this, the implementation of the nanotechnology has

been an aim of the recent analysis by many scholars owing to the fact that the

nanoparticles exhibit remarkable electrical, optical, chemical behavior and due to

their Brownian motion and thermophoresis properties. Owing to such features, the
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nanoparticles are widely used in catalysis, imaging, energy-based research, micro-

electronics, medical and environmental applications. These particles are composed

of metals or non-metals. On top of that, latest investigations have made the in-

fusion of nanoparticles, practicable in heat transfer fluids most notably water,

diethylene glycol and propylene glycol to convert them into a more efficient cate-

gory of heat transfer fluids [26]. Nanofluids are processed by the diffusion of the

suspended nanoparticles in the immersed liquid (a base fluid and nanoparticles).

Moreover, such fluids when compared with the conventional heat transfer fuids,

have much higher rate of the thermal conduction and exhibit significant character-

istics. Owing to their enhanced features, nanofluids have immense applications in

the automobile industries, medical arena, power plant cooling systems, nuclear en-

gineering and a lot more. Moreover, several research studies have been performed

by considering the different aspects of the flows past a stretching sheet. Crane

[27] discussed the flow by considering a stretching sheet. Pavlov [28] illustrated

his findings on the MHD flow past a stretching sheet. On the contrary, Fang

and Zhang [29] explored the MHD flow past a stretching sheet by examining the

wall mass suction and presented the exact solution for the problem. In addition,

many significant features of the MHD flow past a stretching sheet were presented

and elaborated in the literature [30–33]. Motivated by the formerly findings on the

non-Newtonian and Newtonain fluids, the study of stagnation point MHD flow us-

ing the Casson and Carreau nanofluids has been presented. The governing PDEs

have been converted to a set of ODES through suitable similarity transformations

and the numerical solution has been derived by the shooting method.
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Layout of Thesis:

A brief overview of the contents of the thesis is provided below.

Chapter 2 includes some basic definitions and terminologies, which will help

to understand the concepts discussed later on.

Chapter 3 provides the proposed stagnation point MHD flow using the Casson

nanofluid past the radially stretching sheet. The numerical results of the govern-

ing flow equations are derived by the shooting method.

Chapter 4 extends the proposed flow discussed in Chapter 3 by using the Carreau

fluid instead of the Casson fluid.

Chapter 5 provides the concluding remarks of the thesis.

References used in the thesis are mentioned in Biblography.



Chapter 2

Basic Definitions and Governing

Equations

Some definitions, basic laws and terminologies would be discussed in the current

chapter, which would be used in next chapters.

2.1 Important Definitions

Definition 2.1 (Fluid). [34]

“A substance exists in three primary phases: solid, liquid, and gas. (At very high

temperatures, it also exists as plasma.) A substance in the liquid or gas phase is

referred to as a fluid. Distinction between a solid and a fluid is made on the basis of

the substances ability to resist an applied shear (or tangential) stress that tends to

change its shape. A solid can resist an applied shear stress by deforming, whereas

a fluid deforms continuously under the influence of shear stress, no matter how

small. In solids stress is proportional to strain, but in fluids stress is proportional

6
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to strain rate. When a constant shear force is applied, a solid eventually stops

deforming, at some fixed strain angle, whereas a fluid never stops deforming and

approaches a certain rate of strain.”

Definition 2.2 (Fluid Mechanics). [34]

“Fluid mechanics is defined as the science that deals with the behavior of fluids at

rest (fluid statics) or in motion (fluid dynamics) and the interaction of fluids with

solid or other fluids at the boundaries.”

Definition 2.3 (Fluid dynamics). [34]

“It is the study of the motion of liquids, gases and plasmas from one place to

another. Fluid dynamics has a wide range of applications like calculating force

and moments on aircraft, mass flow rate of petroleum passing through pipelines,

prediction of weather, etc.”

Definition 2.4 (Hydrodynamics). [35]

“The study of the motion of fluids that are practically incompressible such as

liquids, especially water and gases at low speeds is usually referred to as hydrody-

namics.”

Definition 2.5 (Magnetohydrodynamics). [35]

“Magnetohydrodynamics (MHD) is concerned with the flow of electrically conduct-

ing fluids in the presence of magnetic fields, either externally applied or generated

within the fluid by inductive action.”

Definition 2.6 (Nanofluid). [35]

“A nanofluid is a fluid containing nanometer-sized particles, called nanoparticles.

These fluids are engineered colloidal suspensions of nanoparticles in a base fluid.
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The nanoparticles used in nanofluids are typically made of metals, oxides, carbides,

or carbon nanotubes. Common base fluids include water, ethylene glycol and oil.”

Definition 2.7 (Casson Fluid). [1]

“Casson fluid can be defined as a shear thinning liquid which is assumed to have

an infinite viscosity at zero rate of shear, a yield stress below which no flow occurs,

and a zero viscosity at an infinite rate of shear.”

Definition 2.8 (Carreau Fluid). [36]

“Carreau fluid is a type of generalized Newtonian fluid where viscosity depends

upon the shear rate. At low and high shear rates, a Carreau fluid behaves as a

Newtonian fluid whereas at intermediate shear rates, a Carreau fluid behaves as a

Power-law fluid. Styling gel and uncooked paste of corn starch and water are few

examples of Carreau fluid.”

2.2 Types of Flow

Definition 2.9 (Compressible and Incompressible Flows). [34]

“A flow is classified as being compressible or incompressible, depending on the level

of variation of density during flow. Incompressibility is an approximation, and a

flow is said to be incompressible if the density remains nearly constant throughout.

Therefore, the volume of every portion of fluid remains unchanged over the course

of its motion when the flow (or the fluid) is incompressible. The densities of liquids

are essentially constant, and thus the flow of liquids is typically incompressible.

Therefore, liquids are usually referred to as incompressible substances. A pressure

of 210 atm, for example, causes the density of liquid water at 1 atm to change
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by just 1 percent. Gases, on the other hand, are highly compressible. A pressure

change of just 0.01 atm, for example, causes a change of 1 percent in the density

of atmospheric air.”

Definition 2.10 (Steady and Unsteady Flow). [34]

“The terms steady and uniform are used frequently in engineering, and thus it

is important to have a clear understanding of their meanings. The term steady

implies no change at a point with time. The opposite of steady is unsteady. The

term uniform implies no change with location over a specified region. The terms

unsteady and transient are often used interchangeably, but these terms are not

synonyms. In fluid mechanics, unsteady is the most general term that applies to

any flow that is not steady, but transient is typically used for developing flows.

When a rocket engine is fired up, for example, there are transient effects (the

pressure builds up inside the rocket engine, the flow accelerates, etc.) until the

engine settles down and operates steadily. The term periodic refers to the kind of

unsteady flow in which the flow oscillates about a steady mean.”

Definition 2.11 (Laminar and Turbulent Flow). [34]

“Some flows are smooth and orderly while others are rather chaotic. The highly

ordered fluid motion characterized by smooth layers of fluid is called laminar.

The word laminar comes from the movement of adjacent fluid particles together

in laminates. The flow of high-viscosity fluids such as oils at low velocities is

typically laminar. The highly disordered fluid motion that typically occurs at

high velocities and is characterized by velocity fluctuations is called turbulent.

The flow of low-viscosity fluids such as air at high velocities is typically turbulent.



Basic Definitions and Governing Equations 10

The flow regime greatly influences the required power for pumping. A flow that

alternates between being laminar and turbulent is called transitional.”

Definition 2.12 (Viscous and Inviscid Flow). [34]

“When two fluid layers move relative to each other, a friction force develops be-

tween them and the slower layer tries to slow down the faster layer. This internal

resistance to flow is quantified by the fluid property viscosity, which is a measure

of internal stickiness of the fluid. Viscosity is caused by cohesive forces between

the molecules in liquids and by molecular collisions in gases. There is no fluid with

zero viscosity, and thus all fluid flows involve viscous effects to some degree. Flows

in which the frictional effects are significant are called viscous flows. However, in

many flows of practical interest, there are regions (typically regions not close to

solid surfaces) where viscous forces are negligibly small compared to inertial or

pressure forces. Neglecting the viscous terms in such inviscid flow regions greatly

simplifies the analysis without much loss in accuracy.”

Definition 2.13 (Newtonian and Non-Newtonian Fluids). [34]

“Fluids for which the viscosity is not independent of the rate of shear are referred

as non-Newtonian and the liquids for which the viscosity is independent of the

rate of shear are called Newtonian fluids.”

2.3 Fluid Properties

Definition 2.14 (Heat Transfer). [37] “The study of heat transfer is directed to

1-the estimation of rate of flow of energy as heat through the boundary of the

system both under steady and transient conditions,
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2-the determination of temperature field under stwady and transient conditions,

which also will provide the information about the gradient and time rate of change

of temperature at various locations and time.”

Definition 2.15 (Mass Transfer). [37]

“Mass transfer is the flow of molecules from one body to another when these

bodies are in contact or within a system consisting of two components when the

distribution of materials is not uniform. When a copper plate is placed on a steel

plate, some molecules from either side will diffuse into the other side. When salt is

placed in a glass and water poured over it, after sufficient time the salt molecules

will diffuse into the water body. A more common example is drying of clothes or

the evaporation of water spilled on the floor when water molecules diffuse into the

air surrounding it. Usually mass transfer takes place from a location where the

particular component is proportionately high to a location where the component

is proportionately low. Mass transfer may also take place due to potentials other

than concentration difference.”

Definition 2.16 (Thermal Radiation). [37]

“The process by which heat is transferred from a body by virtue of its temperature,

without the aid of any intervening medium, is called thermal radiation. Sometimes

radiant energy is taken to be transported by electromagnetic waves while at other

times it is supposed to be transported by particle like photons. Radiation is found

to travel at the speed of light in vacuum. The term Electromagnetic radiation

encompasses many types of radiation namely short wave radiation like gamma ray,

x-ray, microwave, and long wave radiation like radio wave and thermal radiation.
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The cause for the emission of each type of radiation is different. Thermal radiation

is emitted by a medium due to its temperature.”

Definition 2.17 (Boundary Layer). [37]

“Viscous effects are particularly important near the solid surfaces, where the strong

interaction of the molecules of the fluid with molecules of the solid causes the rel-

ative velocity between the fluid and the solid to become almost exactly zero for a

stationary surface. Therefore, the fluid velocity in the region near the wall must

reduce to zero. This is called no slip condition. In that condition there is no

relative motion between the fluid and the solid surface at their point of contact.

It follows that the flow velocity varies with distance from the wall; from zero at

the wall to its full value some distance away, so that significant velocity gradients

are established close to the wall. In most cases this region is thin (compared to

the typical body dimension), and it is called a boundary layer”.

2.4 Conservation Laws [34]

“Several conservation laws such as the laws of conservation of mass, conservation of

energy and conservation of momentum are of great use by the research community.

Historically, the conservation laws are first applied to a fixed quantity of matter

called a closed system or just a system, and then extended to regions in space

called control volumes. The conservation relations are also called balance equations

since any conserved quantity must balance during a process. We now give a brief

description of the conservation of mass, momentum, and energy relations.”
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2.4.1 Conservation of Mass

“The conservation of mass relation for a closed system undergoing a change is

expressed as msys = constant or dmsys/dt = 0, which is a statement of the obvious

that the mass of the system remains constant during a process. For a control

volume (CV ), mass balance is expressed in the rate form as

min −mout =
dmCV

dt

where min and mout are the total rates of mass flow into and out of the control

volume, respectively, and dmCV /dt is the rate of change of mass within the control

volume boundaries. In fluid mechanics, the conservation of mass relation written

for a differential control volume is usually called the continuity equation.”

2.4.2 Conservation of Momentum

“The product of the mass and the velocity of a body is called the linear momentum

or just the momentum of the body, and the momentum of a rigid body of mass m

moving with a velocity
−→
V is m

−→
V . Newtons second law states that the acceleration

of a body is proportional to the net force acting on it and is inversely proportional

to its mass, and that the rate of change of the momentum of a body is equal to

the net force acting on the body. Therefore, the momentum of a system remains

constant when the net force acting on it is zero, and thus the momentum of such

systems is conserved. This is known as the conservation of momentum principle.”
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2.4.3 Conservation of Energy

“Energy can be transferred to or from a closed system by heat or work, and the

conservation of energy principle requires that the net energy transfer to or from a

system during a process be equal to the change in energy content of the system.

Control volumes involve energy transfer via mass flow also, and the conservation

of energy principle, also called the energy balance, is expressed as.

Ein − Eout =
dEcv
dt

where Ein and Eout are the total rates of energy transfer into and out of the control

volume, respectively, and dECV /dt is the rate of change of energy within the

control volume boundaries. In fluid mechanics, we usually limit our consideration

to mechanical forms of energy only.”

2.5 Dimensional Analysis [34]

“The dimensional analysis is a powerful tool for engineers and scientists in which

the combination of dimensional variables, nondimensional variables, and dimen-

sional constants into nondimensional parameters reduces the number of necessary

independent parameters in a problem.”

2.5.1 Dimensions and Units

“A dimension is the measure of a physical quantity (without numerical values),

while a unit is a way to assign a number to that dimension. For example, length is
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a dimension that is measured in units such as microns (µm), feet (ft), centimeters

(cm), meters (m), kilometers (km), etc. Further, force has the same dimensions

as mass times acceleration (by Newtons’s second law). Thus, in terms of primary

dimensions, dimensions of force:

Force =
Mass length

time2
=
mL

t2
,

”

2.5.2 Dimensional Homogeneity

“There is a popular old saying that you cannot add apples and oranges. This is

actually a simplified expression of a far more global and fundamental mathematical

law for equations, the law of dimensional homogeneity, stated as

Every additive term in an equation must have the same dimensions.

Consider, for example, the change in total energy of a simple compressible closed

system from one state and/or time(1) to another (2). The change in total energy

of the system E is given by

∆E = ∆U + ∆KE + ∆PE, (2.1)

where E has three components: internal energy (U), kinetic energy (KE), and

potential energy (PE). These components can be written in terms of the system

mass (m); measurable quantities and thermodynamic properties at each of the two

states, such as speed (V ), elevation (z), and specific internal energy (u); and the

known gravitational acceleration constant (g),
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∆U = m(u2 − u1), ∆KE = 1
2
m(V 2

2 − V 2
1 ), ∆PE = mg(Z2 − Z1). It is straight-

forward to verify that the left side of Eq. (2.1) and all three additive terms on

the right side of above equations have the same dimensionsenergy. Using the

definitions of above equations, we write the primary dimensions of each term,

{∆E} = {Energy} = {Force.Length} → {∆E} = {mL2

t2
}

{∆U} = {MassEnergy
Mass
} = {Energy} → {∆U} = {mL2

t2
}

{∆KE} = {MassLength2

time2
} → {∆KE} = {mL2

t2
}

{∆PE} = {MassLength
time2

Length} → {∆PE} = {mL2

t2
} .

If at some stage of an analysis we find ourselves in a position in which two additive

terms in an equation have different dimensions, this would be a clear indication

that we have made an error at some earlier stage in the analysis. In addition to

dimensional homogeneity, calculations are valid only when the units are also ho-

mogeneous in each additive term. For example, units of energy in the above terms

may be J , N , m, or kg, m2/s2, all of which are equivalent. Suppose, however,

that kJ were used in place of J for one of the terms. This term would be off by a

factor of 1000 compared to the other terms. It is wise to write out all units when

performing mathematical calculations in order to avoid such errors.”

2.5.3 Nondimensionalization of Equations

“The law of dimensional homogeneity guarantees that every additive term in an

equation has the same dimensions. It follows that if we divide each term in the

equation by a collection of variables and constants whose product has those same
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dimensions, the equation is rendered nondimensional. If, in addition, the nondi-

mensional terms in the equation are of order unity, the equation is called normal-

ized. Normalization is, thus, more restrictive than nondimensionalization, even

though the two terms are sometimes (incorrectly) used interchangeably. Each term

in nondimensional equation is dimensionless. In the process of nondimensional-

izing of an equation of motion, nondimensional parameters often appear–most of

which are named after a notable scientist or engineer (e.g., the Reynolds num-

ber and the Froude number). This process is referred to by some authors as the

inspectional analysis.”

2.6 Dimensionless Parameters

Definition 2.18 (Skin-Friction Coefficient). [38]

“It is a dimensionless number and is defined as

Cf =
τw

2Qw∞2
,

where τw is the local wall shear stress, ρ is the fluid density and Ue is the free

stream velocity (usually taken outside of the boundary layer or at the inlet). It

expresses the dynamic friction resistance originating in viscous fluid flow around

a fixed wall.”

Definition 2.19 (Nusselt Number). [38]

“It is a dimensionless number, first introduced by a German engineer Ernst Kraft
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Wilhelm Nusselt and is defined as

Nu =
αL

k
,

where where α represents the heat transfer coefficient, L denotes the characteristic

length and k is the thermal conductivity. It expresses the ratio of the total heat

transfer in a system to the heat transfer by conduction. In characterizes the heat

transfer by convection between a fluid and the environment close to it or, alter-

natively, the connection between the heat transfer intensity and the temperature

field in a flow boundary layer. It expresses the dimensionless thermal transfer-

ence. The physical significance is based on the idea of a fluid boundary layer in

which the heat is transferred by conduction. If it is not so, the criterion loses its

significance. ”

Definition 2.20 (Sherwood Number). [38]

“ The Sherwood number was first introduced by an American chemical engineer,

Thomas Kilgore Sherwood and is defined as .

Sh =
BL

D

where B is the mass transfer coefficient, L denotes the characteristic length and

D stands for molecular diffusivity.It expresses the ratio of the heat transfer to the

molecular diffusion. It characterizes the mass transfer intensity at the interface of

phases. ”
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Definition 2.21 (Eckert Number). [38]

“The Eckert number (Ec) is a dimensionless number used in the continuum me-

chanics. It expresses the relationship between a flow’s kinetic energy and enthalpy,

and is used to characterize the dissipation. It is defined as

Ec =
u2

Cp∆T
,

where u (ms−1) fluid flow velocity far from body, Cp is the constant pressure local

specific heat of continuum, ∆T is temperature difference. It expresses the ratio of

kinetic energy to a thermal energy change.”

Definition 2.22 (Prandtl Number). [38]

“The Prandtl number which is a dimensionless number, named after the German

physicist Ludwig Prandtl, is defined as

Pr =
ν

α
,

where ν stands for the kinematic viscosity and α denotes the thermal diffusiv-

ity. This number expresses the ratio of the momentum diffusivity (viscosity) to

the thermal diffusivity. It characterizes the physical properties of a fluid with

convective and diffusive heat transfers. It describes, for example, the phenomena

connected with the energy transfer in a boundary layer. It expresses the degree of

similarity between velocity and diffusive thermal fields or, alternatively, between

hydrodynamic and thermal boundary layers.”
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Definition 2.23 (Schmidt Number). [38]

“

Sc =
µ

ρDm

=
ν

Dm

,

where ν is the kinematic viscosity, Dm is mass diffusivity, µ is the dynamic viscosity

of the fluid and ρ is the density of the fluid. This number expresses the ratio of the

kinematic viscosity, or momentum transfer by internal friction, to the molecular

diffusivity. It characterizes the relation between the material and momentum

transfers in mass transfer. It provides the similarity of velocity and concentration

fields in mass transfer. For example, molten materials with an equal Schmidt

number have similar velocity and concentration fields. Higher Sc number values

characterize slower mass exchange and higher values of dividing coefficients. This

leads to higher mixing and a tendency to crack in a solidified casting. The criterion

was first introduced by Schmidt in 1929.”

Definition 2.24 (Weissenberg Number). [38]

“ The dimensionless Weissenberg number, formulated by German physicist Karl

Weissenberg, is defined as

We =
ρu2

τ
,

where ρ is the fluid density, u denotes the flow velocity and τ stands for the

shear stress. This number expresses the characteristic material time (relaxation

time) and the shear velocity. It characterizes the velocity and time relations in

rheological processes in viscoelastic shear flow. Furthermore, it also expresses the

ratio of the dynamic viscoelastic force to the viscous force.”
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Definition 2.25 (Biot Number). [38]

“

Bi =
hhL

k
,

where hh represents the heat transfer coefficient, L denotes the characteristic

length and k is the thermal conductivity. This number expresses the ratio of the

heat flow transferred by convection on a body surface to the heat flow transferred

by conduction in a body. The criterion was first introduced by French physicist,

Jean-Baptiste Biot. ”

Definition 2.26 (Radiation Parameter). [38]

“ The dimensionless Radiation parameter is defined as

Rd =
εσ∗T 3Lh

λ
,

where ε is the emissivity of inner channel wall, σ∗ represents the Stefan Boltzmann

constant, Lh stands for the hydraulic diameter, Tf denotes the temperature of the

fluid and k is the thermal conductivity. This parameter expresses the ratio of the

heat transferred by radiation in a passageway to that transferred by conduction in

a channel wall. It characterizes the relation between the radiation and conduction

heat transfers in passageways. Alternatively, it expresses the influence of the

radiation on the convective transfer.”



Chapter 3

MHD Stagnation Point Casson

Nanofluid Flow over a Radially

Stretching sheet

3.1 Introduction

The numerical investigation on the flow of Casson nanofluid past a radially stretch-

ing sheet close to a stagnation point along with convective boundary conditions

has been taken into account. Moreover, the radiation effects and magnetic field

are examined. In additon to this, the effects of heat generation/absorption are also

explored. The conversion of non-linear partial differential equations describing the

proposed flow problem to a set of ordinary differential equations has been carried

out by employing appropriate similarity transformations. The shooting method

has been employed for the numerical treatment of the proposed flow equations.

22
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The impact of pertinent flow parameters on the non-dimensional velocity, temper-

ature and concentration profiles has been illustrated via tables and graphs. The

limiting case of the present study affirms that the obtained numerical results re-

flect a very good agreement with those from open literature. In this chapter, a

detailed review of [39] has been provided.

3.2 Mathematical Modeling

The present model aims to investigate the laminar, incompressible and steady flow

of the Casson nanofluid past a radially stretched surface in close proximity of a

stagnation point. In the light of thermal radiation and heat generation/absorp-

tion, the characteristics of flow and heat transfer are examined. The coordinate

system is chosen in a manner that r− axis is along the flow whereas z−axis is

perpendicular to the flow. The velocity of the outer flow is taken as Ue. Fur-

thermore, the direction of the uniform magnetic field is chosen in such a manner

that it is normal to the surface of the fluid flow. The effects of Brownian mo-

tion and thermophoresis have been elaborated. Moreover, the convective surface

conditions have been taken into consideration. The constitutive equations of the

Casson nanofluid model are as follow [4–9]:

∂u

∂r
+
u

r
+
∂w

∂z
= 0, (3.1)

u
∂u

∂r
+ w

∂u

∂z
= νf

(
1 +

1

β

)
∂2u

∂z2
+ Ue

dUe
dr
− σB0(u− Ue)

ρf
, (3.2)

u
∂T

∂r
+ w

∂T

∂z
= αf

∂2T

∂z2
+ τ

[
DB

∂C

∂z

∂T

∂z
+
DT

T∞

(
∂T

∂z

)2
]

+
Q0 (T − T∞)

(ρcp)f

+
νf
cp

(
1 +

1

β

)(
∂u

∂z

)2

+
σB2

0 (u− Ue)2

(ρcp)f
− 1

(ρcp)f

∂qr
∂z

, (3.3)
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u
∂C

∂r
+ w

∂C

∂z
= DB

∂2C

∂z2
+
DT

T∞

∂2T

∂z2
− Cr (C − C∞) . (3.4)

Figure 3.1: Schematic of physical model

The corresponding conditions at the boundary surface are

u = Uw = ar, w = 0, −kf
∂T

∂z
= hh (Tf − T ) , DB

∂C

∂z
= −hs (Cf − C) at z = 0,

u→ Ue = br, T → T∞, C → C∞ as z →∞. (3.5)

The following similarity variables are taken into consideration.

η =

√
a

νf
z, u = arf ′ (η) , w = −2

√
aνff (η) , θ (η) =

T − T∞
Tf − T∞

, φ (η) =
C − C∞
Cf − C∞

.

The Rosseland approximation has been considered for radiation and the formulae
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for the radiative heat flux qr is stated below.

qr =
−4σ∗

3k∗
∂T 4

∂z
. (3.6)

For smaller value of temperature contrast, the temperature difference T 4 might be

expanded about T∞ using Taylor series, as follows:

T 4 = T 4
∞ +

4T 3
∞

1!
(T − T∞)1 +

12T 2
∞

2!
(T − T∞)2 +

24T∞
3!

(T − T∞)3 + ...,

omitting the terms having higher order, we get

T 4 = T 4
∞ +

4T 3
∞

1!
(T − T∞)1 .

Then

∂T 4

∂z
= 4T 3

∞
∂T

∂z
. (3.7)

Using (3.7) in (3.6) and then differentiating w.r.t z, we get

∂qr
∂z

= −16σ∗T 3
∞

3k∗
∂2T

∂z2
, (3.8)

The detailed procedure for the conversion of the partial differential equations (3.1)-

(3.5) to the ordinary differential equations in the dimensionless form has been

discussed below.

• ∂u

∂r
=

∂

∂r
(u)

=
∂

∂r
(arf ′ (η))
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= a
∂

∂r
(rf ′ (η))

= a

(
f ′ (η)

∂r

∂r
+ r

∂f ′

∂r

)
= a

(
f ′ (η) + r

∂f ′

∂η

∂η

∂r

)
= af ′ (η) .

• u

r
=
arf ′ (η)

r

= af ′ (η) .

• ∂w

∂z
=

∂

∂z
(w)

=
∂

∂z

(
−2
√
aνff (η)

)
= −2

√
aνf

∂f

∂z

= −2
√
aνf

∂f

∂η

∂η

∂z

= −2
√
aνff

′ (η)

(√
a

νf

)
= −2af ′ (η) .

Verification of the continuity equation has been carried out as:

∂u

∂r
+
u

r
+
∂w

∂z
= af ′ (η) + af ′ (η)− 2af ′ (η) = 0.

Now equation (3.2) will be converted into the dimensionless form. The procedure

includes the following conversion of different terms from dimensional to the non-

dimensional form.

• ∂u

∂z
=

∂

∂z
(u)

=
∂

∂z
(arf ′ (η))
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= a
∂

∂z
(rf ′ (η))

= a

(
f ′ (η)

∂r

∂z
+ r

∂f ′

∂z

)
= arf ′′ (η)

(√
a

νf

)
= ar

√
a

νf
f ′′ (η) .

• u
∂u

∂r
= (arf ′ (η)) (af ′ (η))

= a2rf ′2 (η) .

• w
∂u

∂z
=
(
−2
√
aνff (η)

)(
ar

√
a

νf
f ′′ (η)

)
= −2ra2f (η) f ′′ (η) .

• ∂2u

∂z2
=

∂

∂z

(
∂u

∂z

)
=

∂

∂z

(
ar

√
a

νf
f ′′ (η)

)
= ar

√
a

νf

(
∂

∂z
(f ′′ (η))

)
= ar

√
a

νf

(
∂f ′′ (η)

∂z

)
= ar

√
a

νf

(
∂f ′′ (η)

∂η

∂η

∂z

)
= ar

√
a

νf
f ′′′ (η)

(√
a

νf

)
=
a2

νf
rf ′′′ (η) .

• Ue
dUe
dr

= (br)

(
d

dr
(br)

)
= br (b)

= b2r.

• (u− Ue) = (arf ′ (η)− br)

= ar

(
f ′ (η)− b

a

)
.
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The left hand side of equation (3.2) can then be written as:

u
∂u

∂r
+ w

∂u

∂z
= a2rf ′2 (η)− 2ra2f (η) f ′′ (η)

= a2r
(
f ′2 (η)− 2f (η) f ′′ (η)

)
. (3.9)

Likewise the right hand side of equation (3.2) is converted to the dimensionless

form through the following process:

νf

(
1 +

1

β

)
∂2u

∂z2
+ Ue

dUe
dr
− σB2

0

ρ
(u− Ue)

= a2r

[(
1 +

1

β

)
f ′′′ (η) +

b2

a2
− σB2

0

aρ

(
f ′ (η)− b

a

)]
. (3.10)

Now using (3.9) and (3.10), equation (3.2) can be written as:

(
1 +

1

β

)
f ′′′ (η) + 2f (η) f ′′ (η)− f ′2 (η)−M2 (f ′ (η)− A) + A2 = 0. (3.11)

For converting equation (3.3) into the dimensionless form, the different terms have

been treated through the similarity variable in the following way.

• ∂T

∂r
=

∂

∂r
((Tf − T∞) θ (η) + T∞)

= (Tf − T∞)
∂θ (η)

∂r

= (Tf − T∞)
∂θ (η)

∂η

∂η

∂r

= (Tf − T∞)
∂θ (η)

∂η
(0) = 0.

• u
∂T

∂r
= arf ′ (η) (0) = 0.

• ∂T

∂z
=

∂

∂z
((Tf − T∞) θ (η) + T∞)

= (Tf − T∞)
∂θ (η)

∂z
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= (Tf − T∞)
∂θ (η)

∂η

∂η

∂z

= (Tf − T∞) θ′ (η)

(√
a

νf

)
=

√
a

νf
(Tf − T∞) θ′ (η) .

• w
∂T

∂z
=
(
−2
√
aνff (η)

)(√ a

νf
(Tf − T∞) θ′ (η)

)
= −2af (η) (Tf − T∞) θ′ (η) .

• ∂2T

∂z2
=

∂

∂z

(
∂T

∂z

)
=

∂

∂z

(√
a

νf
(Tf − T∞) θ′ (η)

)
=

√
a

νf
(Tf − T∞)

∂θ′ (η)

∂z

=

√
a

νf
(Tf − T∞)

∂θ′ (η)

∂η

∂η

∂z

=
a

νf
(Tf − T∞) θ′′ (η) .

• ∂C

∂z
=

∂

∂z
((Cf − C∞)φ (η) + C∞)

= (Cf − C∞)
∂φ (η)

∂z

= (Cf − C∞)
∂φ (η)

∂η

∂η

∂z

= (Cf − C∞)φ′ (η)

(√
a

νf

)
=

√
a

νf
(Cf − C∞)φ′ (η) .

• ∂C

∂z

∂T

∂z
=

a

νf
(Cf − C∞) (Tf − T∞)φ′ (η) θ′ (η) .

•
(
∂T

∂z

)2

=
a

νf
(Tf − T∞)2 θ′2 (η) .

• ∂qr
∂z

= −16T∞σ
∗

3k∗
∂2T

∂z2

= −16T∞σ
∗

3k∗

(
a

νf
(Tf − T∞) θ′′ (η)

)
= −16T∞σ

∗a

3k∗νf
(Tf − T∞) θ′′ (η) .
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•
(
∂u

∂z

)2

=

(
ar

√
a

νf
f ′′ (η)

)2

=
a3r2

νf
f ′′2 (η) .

• (u− Ue) = (arf ′ (η)− br)

= ar

(
f ′ (η)− b

a

)
.

Consider the left hand side of equation (3.3) for conversion into the dimensionless

form as:

u
∂T

∂r
+ w

∂T

∂z
= 0 + (−2a) f (η) (Tf − T∞) θ′ (η)

= −2af (η) (Tf − T∞) θ′ (η)

= −2a (Tf − T∞) f (η) θ′ (η)

=
−2αa (Tf − T∞)

νf

(νf
α

)
f (η) θ′ (η)

=
−2αa (Tf − T∞)

νf
Prf (η) θ′ (η) . (3.12)

The right hand side of equation (3.3) can now be treated as follows.

α
∂2T

∂z2
+ τ

(
DB

∂C

∂z

∂T

∂z
+
DT

T∞

(
∂T

∂T

)2
)

+
Q0

ρcp
(T − T∞)− 1

ρcp

∂qr
∂z

+
νf
Cp

(
1 +

1

β

)(
∂u

∂z

)2

+
σB2

0

cpρ
(u− Ue)2

=
αa

νf
(Tf − T∞)

[
θ′′ (η) +

τDB

α
(Cf − C∞)φ′ (η) θ′ (η) +

τDT

αT∞
(Tf − T∞) θ′2 (η)

+
Q0νf
ρcpaα

θ (η) +
16T∞σ

∗

3k∗αρcp
θ′′ (η) +

(
1 +

1

β

)
a2r2νf

αcp (Tf − T∞)
f ′′2 (η)

+
σB2

0ar
2νf

ρcpα (Tf − T∞)

(
f ′ (η)− b

a

)2 ]
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=
αa

νf
(Tf − T∞)

[
θ′′ (η) +

(
τDB (Cf − C∞)

νf

)(νf
α

)
φ′ (η) θ′ (η)

+

(
τDT (Tf − T∞)

νfT∞

)(νf
α

)
θ′2 (η) +

(
Q0

ρcpa

)(νf
α

)
θ (η)

+
4

3

(
4T∞σ

∗

k∗ (αρcp)

)
θ′′ (η) +

(
1 +

1

β

)(νf
α

)( (ar)2

cp (Tf − T∞)

)
f ′′2 (η)

+
(νf
α

)(σB2
0

ρa

)(
(ar)2

cp (Tf − T∞)

)(
f ′ (η)− b

a

)2 ]
=

αa

νf
(Tf − T∞)

[
θ′′ (η) +NbPrφ′ (η) θ′ (η) +NtPrθ′2 (η) +QPrθ (η)

+
4

3
Rdθ′′ (η) +

(
1 +

1

β

)
PrEcf ′′2 (η) +M2EcPr (f ′ (η)− A)

2

]
. (3.13)

Different parameters used in the above expression have the following formulations:

Nb =
τDB (Cf − C∞)

νf
, P r =

νf
α
, Nt =

τDT (Tf − T∞)

νfT∞
, M2 =

σB2
o

ρa
,

Q =
Qo

ρcpa
, Rd =

4T∞σ
∗

k∗ (αρcp)
, Ec =

a2r2

αcp (Tf − T∞)
, A =

b

a
.

Now using equation (3.12)-(3.13), the dimensionless form of equation (3.3) is:

θ′′ (η) +NbPrφ′ (η) θ′ (η) +NtPrθ′2 (η) +QPrθ (η) +
4

3
Rdθ′′ (η)

+

(
1 +

1

β

)
PrEcf ′′2 (η) +M2EcPr (f ′ (η)− A)

2
= −2Prf (η) θ′ (η) .

⇒
(

1 +
4

3
Rd

)
θ′′ + PrNbθ′φ′ + PrNtθ′2 + 2Prfθ′ +

(
1 +

1

β

)
PrEcf ′′2

+QPrθ +M2EcPr (f ′ − A)
2

= 0.

For converting equation (3.4) into the dimensionless form, the following procedure

has been described.

• C = (Cf − C∞)φ (η) + C∞.
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• T = (Tf − T∞) θ (η) + T∞.

• ∂C

∂r
= (Cf − C∞)

∂φ (η)

∂r

= (Cf − C∞)
∂φ (η)

∂η

∂η

∂r

= (Cf − C∞)
∂φ (η)

∂η
(0) = 0.

• ∂C

∂z
= (Cf − C∞)

∂φ (η)

∂z

= (Cf − C∞)
∂φ (η)

∂η

∂η

∂z

= (Cf − C∞)φ′ (η)

(√
a

νf

)
= (Cf − C∞)

√
a

νf
φ′ (η) .

• w
∂C

∂z
=
(
−2
√
aνff (η)

)(
(Cf − C∞)

√
a

νf
φ′ (η)

)
= −2a (Cf − C∞) f (η)φ′ (η) .

• ∂2C

∂z2
=

∂

∂z

(
∂C

∂z

)
=

∂

∂z

(
(Cf − C∞)

√
a

νf
φ′ (η)

)
= (Cf − C∞)

√
a

νf

∂φ′ (η)

∂z

= (Cf − C∞)

√
a

νf

∂φ′ (η)

∂η

∂η

∂z

= (Cf − C∞)

√
a

νf
φ′′ (η)

(√
a

νf

)
=

a

νf
(Cf − C∞)φ′′ (η) .

• ∂T

∂z
=

∂

∂z
((Tf − T∞) θ (η) + T∞)

= (Tf − T∞)
∂θ (η)

∂z

= (Tf − T∞)
∂θ (η)

∂η

∂η

∂z

= (Tf − T∞) θ′ (η)

(√
a

νf

)
=

√
a

νf
(Tf − T∞) θ′ (η) .
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• ∂2T

∂z2
=

∂

∂z

(
∂T

∂z

)
=

∂

∂z

(√
a

νf
(Tf − T∞) θ′ (η)

)
=

√
a

νf
(Tf − T∞)

∂θ′ (η)

∂z

=

√
a

νf
(Tf − T∞)

∂θ′ (η)

∂η

∂η

∂z

=
a

νf
(Tf − T∞) θ′′ (η) .

The left hand side of equation (3.4) gets the following form.

u
∂C

∂r
+ w

∂C

∂z
= (arf ′ (η)) (0) +

(
−2
√
aνff (η)

)(
(Cf − C∞)

√
a

νf
φ′ (η)

)
= DB

a

νf
(Cf − C∞) (−2Scf (η)φ′ (η)) . (3.14)

Now the right hand side of equation (3.3), can be reformed as:

DB
∂2C

∂z2
+
DT

T∞

∂2T

∂z2
− Cr (C − C∞)

= DB
a

νf
(Cf − C∞)φ′′ (η) +

DT

T∞

a

νf
(Tf − T∞) θ′′ (η)− Cr (Cf − C∞)φ (η)

= DB
a

νf
(Cf − C∞)

[
φ′′ (η) +

DT

T∞DB

(Tf − T∞)

(Cf − C∞)
θ′′ (η)− Cr

νf
aDB

φ (η)

]
= DB

a

νf
(Cf − C∞)

[
φ′′ (η) +

τDT (Tf − T∞)

νf

νf
τDB (Cf − C∞)

θ′′ (η)

− Cr
a

νf
DB

φ (η)

]
= DB

a

νf
(Cf − C∞)

[
φ′′ (η) +

Nt

Nb
θ′′ (η)− γSc φ (η)

]
. (3.15)

From equations (3.14) and (3.15),we get

φ′′ (η) +
Nt

Nb
θ′′ (η)− γSc φ (η) = −2Scf (η)φ′ (η)
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⇒ φ′′ (η) + 2Scf (η)φ′ (η) +
Nt

Nb
θ′′ (η)− γSc φ (η) = 0. (3.16)

The dimensionless quantities used in equation (3.16) are formulated as:

Sc =
νf
DB

, γ =
Cr
a
. (3.17)

The procedure for the conversion of boundary conditions into dimensionless form

has been discussed below.

• u (r, z) = ar at z = 0.

⇒ arf ′ (η) = ar at η = 0.

⇒ f ′ (η) = 1.

• w (r, z) = 0 at z = 0.

⇒ − 2
√
aνff (η) = 0 at η = 0.

⇒ f (0) = 0.

• − kf
∂T

∂z
= hh (Tf − T ) at z = 0.

⇒ − kf
√

a

νf
(Tf − T∞) θ′ (η) = hh

[
Tf − (Tf − T∞) θ (η)− T∞

]
at η = 0.

⇒ − kf
√

a

νf
(Tf − T∞) θ′ (0) = hh (Tf − T∞) (1− θ (0)) .

⇒ θ′ (0) = −hh
kf

√
νf
a

(1− θ (0)) .

⇒ θ′ (0) = −Bi1 (1− θ (0)) .

• DB
∂C

∂z
= −hs (Cf − C) at z = 0.

⇒ DB

√
a

νf
(Cf − C∞)φ′ (η) = −hs

[
Cf − (Cf − C∞)φ (η)− C∞

]
at η = 0.

⇒ DB

√
a

νf
(Cf − C∞)φ′ (0) = −hs (Cf − C∞) (1− φ (0)) .
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⇒ φ′ (0) = − hs
DB

√
νf
a

(1− φ (0)) .

⇒ φ′ (0) = −Bi2 (1− θ (0)) .

• u (r, z)→ br at z →∞.

⇒ arf ′ (η)→ br at η →∞.

⇒ f ′ (η)→ b

a
= A at η →∞.

• T → T∞ at z →∞.

⇒ (Tf − T∞) θ (η) + T∞ → T∞ at η →∞.

⇒ (Tf − T∞) θ (η)→ T∞ − T∞ at η →∞.

⇒ (Tf − T∞) θ (η)→ 0 at η →∞.

⇒ θ (η)→ 0 at η →∞.

• C → C∞ at z →∞.

⇒ (Cf − C∞)φ (η) + C∞ → C∞ at η →∞.

⇒ (Cf − C∞)φ (η)→ C∞ − C∞ at η →∞.

⇒ (Cf − C∞)φ (η)→ 0 at η →∞.

⇒ φ (η)→ 0 at η →∞.

Different parameters used in the above expression have the following formulations:

Bi1 =
hh
kf

√
νf
a
, Bi2 =

hs
DB

√
νf
a
.
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Finally, the ODEs describing the proposed flow problem can be re-collected in the

following system.

(
1 +

1

β

)
f ′′′ + 2ff ′′ − f ′2 + A2 −M2 (f ′ − A) = 0, (3.18)(

1 +
4

3
Rd

)
θ′′ + PrNbθ′φ′ + PrNtθ′2 + 2Prfθ′ +

(
1 +

1

β

)
PrEcf ′′2

+ PrEcM2 (f ′ − A)
2

+ PrQθ = 0, (3.19)

φ′′ +
Nt

Nb
θ′′ + Sc (2fφ′ − γφ) = 0. (3.20)

The transformed boundary conditions are stated below.

f (0) = 0, f ′ (0) = 1,

θ′ (0) = −Bi1 (1− θ (0)) , φ′ (0) = −Bi2 (1− φ (0)) ,

f ′ → A, θ → 0, φ→ 0 as η →∞.


(3.21)

The formulae for the dimensional form of skin-friction coefficient, Nusselt number

and Sherwood number are as follows:

Cf =
τw
ρfU2

w

, Nu =
rqw

kf (Tf − T∞)
, Sh =

rqm
DB (Cf − C∞)

. (3.22)

Given below are the formulae for τw, qw and qm.

τw = µ

(
1 +

1

β

)(
∂u

∂z

)
z=0

, qw = −kf
[(

∂T

∂z

)
− qr
kf

]
z=0

,

qm = −DB

(
∂C

∂z

)
z=0

. (3.23)
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The transformation of the above formulae into the dimensionless form has been

carried out as:

• τw = µ

(
1 +

1

β

)(
∂u

∂z

)
z=0

= µ

(
1 +

1

β

)(
ar

√
a

νf
f ′′ (0)

)
= µar

√
a

νf

(
1 +

1

β

)
f ′′ (0) . (3.24)

• qw = −kf
[(

∂T

∂z

)
− qr
kf

]
z=0

= −kf
[√

a

νf
(Tf − T∞) θ′ (0)−

(
−16σ∗T 3

∞
3kfk∗

√
a

νf
(Tf − T∞) θ′ (0)

)]
= −kf

√
a

νf
(Tf − T∞)

[
1 +

4

3

(
4σ∗T 3

∞
kfk∗

)]
θ′ (0)

= −kf
√

a

νf
(Tf − T∞)

[
1 +

4

3
Rd

]
θ′ (0) . (3.25)

• qm = −DB

(
∂C

∂z

)
z=0

= −DB

√
a

νf
(Cf − C∞)φ′ (0) . (3.26)

Incorporating equation (3.24), (3.25) and (3.26) in equation (3.22), we get the fol-

lowing dimensionless form for skin-friction coefficient, Nusselt number and Sher-

wood number.

• Cf =
τw
ρfU2

w

=
µar
√

a
νf

(
1 + 1

β

)
f ′′ (0)

ρfa2r2

=
1

r

√
νf
a

(
1 +

1

β

)
f ′′ (0)

= Re−
1
2

(
1 +

1

β

)
f ′′ (0) .
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⇒ Re
1
2Cf =

(
1 +

1

β

)
f ′′ (0) . (3.27)

• Nu =
rqw

kf (Tf − T∞)

=
−rkf

√
a
νf

(Tf − T∞)
[
1 + 4

3
Rd
]
θ′ (0)

kf (Tf − T∞)

= −r
√

a

νf

[
1 +

4

3
Rd

]
θ′ (0)

= −Re
1
2

[
1 +

4

3
Rd

]
θ′ (0) .

⇒ Re−
1
2Nu = −

[
1 +

4

3
Rd

]
θ′ (0) . (3.28)

• Sh =
rqm

DB (Cf − C∞)

=
−rDB

√
a
νf

(Cf − C∞)φ′ (0)

DB (Cf − C∞)

= −r
√

a

νf
φ′ (0) .

= −Re
1
2φ′ (0) .

⇒ Re−
1
2Sh = −φ′ (0) , (3.29)

where Re =
rUw
νf

elucidates the local Reynolds number and νf =
µ

ρ
the kinematic

viscosity.

3.3 Solution Methodology

In order to solve the system of ODEs (3.18)-(3.20) subject to the boundary con-

ditions (3.21), the shooting method has been used. Primarily equation (3.18) is

solved numerically and then the computed results of f , f ′ and f ′′ are used in equa-

tions (3.19)-(3.20). For the numerical treatment of equation (3.18), the missing

initial condition f ′′ (0) has been denoted as s and the following notations have
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been considered.

f = h1, f
′ = h2, f

′′ = h3,
∂f

∂s
= h4,

∂f ′

∂s
= h5,

∂f ′′

∂s
= h6. (3.30)

Using the above notations, equation (3.18) can be converted into a system of three

first order ODEs. First three of the following ODEs correspond to (3.18) and the

other three are obtained by differentiating the first three w.r.t s.

h′1 = h2, h1(0) = 0,

h′2 = h3, h2(0) = 1,

h′3 =
β

(1 + β)

[
h22 +M2 (h2 − A)− 2h1h3 − A2

]
, h3(0) = s,

h′4 = h5, h4(0) = 0,

h′5 = h6, h5(0) = 0,

h′6 =
β

(1 + β)

[(
2h2 +M2

)
h5 − 2 (h1h6 + h3h4)

]
, h6(0) = 1.

The RK-4 method has been used to solve the above initial value problem. In order

to get the approximate numerical results, the problem’s domain is considered to

be bounded i.e. [0, η∞], where η∞ is chosen to be an appropriate finite positive real

number in such a way that the variation in the solution for η > η∞ is ignorable.

The missing condition for the above system of equations is to be chosen such that

(h2(η∞))s = A. This algebraic equation has been solved by using the Newton’s

method governed by the following iterative formula.
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s(n+1) = s(n) − (h2(η∞)) s=s(n) − A(
∂h2(η∞)

∂s

)
s=s(n)

.

⇒ s(n+1) = s(n) − (h2(η∞)) s=s(n) − A
(h5(η∞))s=s(n)

. (3.31)

The stopping criteria for the shooting method is set as

| (h2(η∞)) s=s(n) − A| < ε, (3.32)

for some very small positive number ε.

Now to solve equations (3.19) and (3.20) numerically, the missing initial conditions

θ(0) and φ(0) have been denoted by l and m, respectively. Thereby the following

notations have been taken into account.

θ = y1, θ
′ = y2, φ = y3, φ

′ = y4,
∂θ

∂l
= y5,

∂θ′

∂l
= y6,

∂φ

∂l
= y7,

∂φ′

∂l
= y8,

∂θ

∂m
= y9,

∂θ′

∂m
= y10,

∂φ

∂m
= y11,

∂φ′

∂m
= y12.

 (3.33)

Incorporating the above notations, a system of first order ODEs is achieved that

is stated below.

y′1 = y2, y1(0) = l,

y′2 =
−3

3 + 4Rd
(PrNby2y4 + PrNty22 + 2Prh1y2 + PrQy1

+

(
1 +

1

β

)
PrEch23 + PrEcM2 (h2 − A)2), y2(0) = −Bi1(1− l),

y′3 = y4, y3(0) = m,

y′4 = −
(
Nt

Nb

)
y′2 − Sc (2h1y4 − γy3) , y4(0) = −Bi2(1−m),
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y′5 = y6, y5(0) = 1,

y′6 =
−3Pr

3 + 4Rd
((Nby4 + 2Nty2 + 2h1)y6 +Nby2y8 +By5) , y6(0) = Bi1,

y′7 = y8, y7(0) = 0,

y′8 =
3NtPr

Nb(3 + 4Rd)
(Nby4 + 2Nty2 + 2h1)y6 +By5 +Nby2y8)

− 2Sch1y8 + Scγy7, y8(0) = 0,

y′9 = y10, y9(0) = 0,

y′10 =
−3Pr

3 + 4Rd
((Nby4 + 2Nty2 + 2h1)y10 +Nby2y12 +By9) , y10(0) = 1,

y′11 = y12, y11(0) = 0,

y′12 =
3NtPr

Nb(3 + 4Rd)
((Nby4 + 2Nty2 + 2h1)y10 +By9 +Nby2y12)

− 2Sch1y12 + Scγy11, y12(0) = 0.

The RK-4 method has been taken into consideration for solving the above initial

value problem. For the above system of equations, the missing conditions are to

be chosen such that

(y1(l,m))η=η∞ = 0, (y3(l,m))η=η∞ = 0. (3.34)

The above algebraic equations have been solved by using the Newton’s method

governed by the following iterative formula:

 l(n+1)

m(n+1)

 =

 l(n)
m(n)

−

∂y1(l,m)

∂l
∂y1(l,m)
∂m

∂y3(l,m)
∂l

∂y3(l,m)
∂m


−1 y1

y3




(l(n), m(n), η∞)

.
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⇒

 l(n+1)

m(n+1)

 =

 l(n)
m(n)

−

y5 y9

y7 y11


−1 y1

y3




(l(n), m(n), η∞)

.

The stopping criteria for the shooting method is set as:

max{| (y1(η∞)|, |y3(η∞)) |} < ε, (3.35)

for some very small positive number ε. Throughout this chapter ε has been taken

as 10−12 whereas η∞ is set as 7.

3.4 Results with Discussion

In this section, the numerical results of skin-friction coefficient, Nusselt and Sher-

wood numbers are illustrated with tables and graphs by assuming different values

of pertinent flow parameters of interest.

3.4.1 Skin-friction Coefficient, Nusselt and Sherwood Numbers

To validate the MATLAB code, the results of−f ′′(0) and−θ′(0) are reproduced for

the problem discussed by Attia [39]. Tables 3.1-3.4 reflect an excellent agreement

between the results computed by the present code and those already published in

the relevant articles.

Table 3.5 discloses the numerical results of skin-friction coefficient along with Nus-

selt and sherwood numbers for the present model in regards to a change in the

values of various parameters like β, M , Rd, A, Pr, Q, Nb, Nt, Ec and Sc.
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f ′′(0) f ′′(0)

M A Attia [39] Present M A Attia [39] Present

0 0.1 -1.1246 -1.1246 2 0.1 -2.1138 -2.1138

0.2 -1.0556 -1.0556 0.2 -1.9080 -1.9081

0.5 -0.7534 -0.7534 0.5 -1.2456 -1.2456

1.0 0.0000 0.0000 1.0 0.0000 0.0000

1.1 0.1821 0.1821 1.1 0.2691 0.2691

1.2 0.3735 0.3735 1.2 0.5445 0.5445

1.5 1.0009 1.0009 1.5 1.4080 1.4081

1 0.1 -1.4334 -1.4334 3 0.1 -2.9174 -2.9175

0.2 -1.3179 -1.3179 0.2 -2.6141 -2.6141

0.5 -0.9002 -0.9002 0.5 -1.6724 -1.6725

1.0 0.0000 0.0000 1.0 0.0000 0.0000

1.1 0.2070 0.2070 1.1 0.3494 0.3494

1.2 0.4004 0.42236 1.2 0.7037 0.7038

1.5 1.1157 1.1157 1.5 1.7954 1.7955

Table 3.1: Comparison of the computed values of f ′′(0) with those given by Attia
[39] when Nt = Nb = Rd = Ec = Sc = 0.

It has been remarked from the results that for the larger M , the skin-friction coef-

ficient escalates whereas heat and mass transfer rates fall significantly.The higher

estimation of β depreciates the skin-friction coefficient, Nusselt and Sherwood

numbers. For the higher estimation of A, the skin-friction coefficient and the Nus-

selt number de-escalate whereas the Sherwood number climbs marginally.
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−θ′(0) −θ′(0)

Pr A Attia [39] Present Pr A Attia [39] Present

0.05 0.1 0.1273 0.1669 0.5 0.1 0.4691 0.4703

0.2 0.1421 0.1761 0.2 0.5223 0.5224

0.5 0.1845 0.2044 0.5 0.6345 0.6345

1.0 0.2439 0.2510 1.0 0.7699 0.7699

1.1 0.2545 0.2599 1.1 0.7933 0.7933

1.2 0.2632 0.2688 1.2 0.8136 0.8158

1.5 0.2919 0.2942 1.5 0.8793 0.8793

0.1 0.1 0.1618 0.1951 1.0 0.1 0.7657 0.7656

0.2 0.1911 0.2139 0.2 0.8152 0.8151

0.5 0.2615 0.2679 0.5 0.9332 0.9332

1.0 0.3343 0.3450 1.0 1.0888 1.0888

1.1 0.3581 0.3586 1.1 1.1166 1.1165

1.2 0.3700 0.3716 1.2 1.1408 1.1434

1.5 0.4080 0.4081 1.5 1.2200 1.2199

Table 3.2: Comparison of the computed results of Nusselt number −θ′(0) with those
given by Attia [39] when Nt = Nb = Rd = Ec = Sc = 0.

−θ′(0) with M = 1, P r = 0.5

A Attia [39] Present

0.1 0.4691 0.4703

0.2 0.5223 0.5224

0.5 0.6345 0.6345

1.0 0.7699 0.7699

1.1 0.7933 0.7933

1.2 0.8136 0.8158

Table 3.3: Comparison of the computed results of −θ′(0) with those given by Attia
[39] when Nt = Nb = Rd = Ec = Sc = 0 and Q = 0.1.
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β M A Rd Pr Q Nb Nt Ec Sc −a1f ′′(0) −a2θ′(0) −φ′(0)

0.5 1.0 0.1 0.1 0.7 0.1 0.5 0.1 0.1 1.2 2.4828 0.0862 0.09398

5.0 1.5703 0.0870 0.09373

10 1.5034 0.0871 0.09371

1.2 2.6870 0.0781 0.09312

1.4 3.0284 0.0762 0.09302

0.3 2.0980 0.0922 0.09301

0.5 1.5591 0.0945 0.09200

0.2 2.4828 0.0858 0.09396

0.3 2.4828 0.0853 0.09395

1.0 2.4828 0.0874 0.09411

2.0 2.4828 0.0878 0.09475

0.5 2.4828 0.0701 0.09448

0.7 2.4828 -0.1018 0.09929

0.7 2.4828 0.0862 0.09393

0.8 2.4828 0.0861 0.09392

0.2 2.4828 0.0862 0.09416

0.3 2.4828 0.0379 0.09434

0.5 2.4828 0.0379 0.09592

1.0 2.4828 -0.0231 0.09835

1.4 2.4828 0.0862 0.09445

1.6 2.4828 0.0863 0.09482

Table 3.4: The computed results of skin-friction coefficient, Nusselt and Sherwood

numbers for γ = 1, Bi1 = 0.1 = Bi2, where a1 =
(

1 + 1
β

)
and a2 =

(
1 + 4

3Rd
)
.
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γ Bi1 Bi2 −a1f ′′(0) −a2θ′(0) φ′(0)

1.0 0.1 0.1 2.4828 0.0761 0.1064

1.5 2.4828 0.0761 0.1073

2.0 2.4828 0.0761 0.1078

0.2 2.4828 0.7699 0.1062

0.3 2.4828 0.7933 0.1061

0.2 2.4828 0.8158 0.2006

0.3 2.4828 0.8793 0.2843

Table 3.5: The computed results of skin-friction coefficient, Nusselt and Sherwood
numbers for β = 0.5,M = 1, A = 0.1, Rd = 0.1, P r = 0.7, Q = 0.1, Nb = 0.5, Nt =

0.1, Ec = 0.1, Sc = 1.2, where a1 =
(

1 + 1
β

)
and a2 =

(
1 + 4

3Rd
)
.

Furthermore, heat and mass transfer rates decline by assuming the larger vaues

of Rd and Nb. An enhancement in the Nusselt and Sherwood numbers has been

seen as Pr and Sc assume the larger values. Mass transfer rate falls by taking into

account the larger values of Q, Nt and Ec whereas Sherwood number increases.

Table 3.6 reflects the computed results of the Nusselt and Sherwood numbers on

account of the various values of γ, Bi1 and Bi2. Both heat and mass transfer

rates increase as the value of γ escalates. For the larger Bi1, the Nusselt num-

ber is enhanced whereas the Sherwood number experiences an opposite behaviour.

It can be seen that a rise in Bi2 decreases the Nusselt number but contrary to

this the mass transfer rate climbs significantly. Tables 3.7-3.8 portray the inter-

vals If , Iθ and Iφ where from the missing initial conditions f ′′(0), θ′(0) and φ′(0)

respectively can be chosen. It is noteworthy that the intervals mentioned offer a
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considerable flexibility for the choice of initial guesses.

β M A Rd Pr Q Nb Nt Ec Sc If Iθ Iφ

0.5 1 0.1 0.1 0.7 0.1 0.5 0.1 0.1 1.2 [-1, 2.5] [-1.9, 170] [-1.9, 170]

5.0 [-1.4, -0.9] [-1.9, 160] [-1.9, 160]

10 [-1.4, -1.3] [-1.3, 160] [-1.3, 160]

1.2 [-0.7, 0] [0, 150] [0, 150]

1.4 [-0.9,-0.8] [-0.5, 200] [-0.5, 200]

0.3 [-1, 2.5] [-6, 220] [-6, 200]

0.5 [-0.9, -0.2] [-0.5, 250] [-0.5, 250]

0.2 [-0.9, 0.8] [-2, 190] [-2, 190]

0.3 [-0.9, 1] [-2, 200] [-2, 200]

1.0 [-1, 2.5] [-1, 140] [-1, 140]

2.0 [-1, 2.5] [-1, 100] [-1, 100]

0.5 [-1, 2.5] [-0.8, 160] [-0.8, 160]

0.7 [-1, 2.5] [-1, 150] [-1, 150]

0.7 [-1, 2.5] [-1, 140] [-1, 140]

0.8 [-1, 2.5] [-1, 180] [-1, 180]

0.2 [-1, 2.5] [-2, 150] [-2, 150]

0.3 [-1, 2.5] [-2, 170] [-2, 170]

0.5 [-1, 2.5] [-2, 170] [-2, 170]

1.0 [-1, 2.5] [-3, 170] [-3, 170]

1.4 [-1, 2.5] [-3, 170] [-3, 170]

1.6 [-1, 2.5] [-2, 140] [-2, 140]

Table 3.6: The intervals for the initial guesses for the missing initial conditions when
γ = 1, Bi1 = 0.1 = Bi2.
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γ Bi1 Bi2 If Iθ Iφ

1.0 0.1 0.1 [-1, 2.5] [-0.3, 10] [-0.2, 10]

1.5 [-1, 2.5] [-0.07, 8] [-0.09, 9]

2.0 [-1, 2.5] [-0.07, 10] [-0.09, 10]

0.2 [-1, 2.5] [-0.13, 10] [-0.09, 10]

0.3 [-1, 2.5] [-0.13, 19] [-0.09, 15]

0.2 [-1, 2.5] [-0.07, 10] [-0.17, 10]

0.3 [-1, 2.5] [-0.07, 10] [-0.25, 10]

Table 3.7: The intervals for the initial guesses for the missing initial conditions when
β = 0.5,M = 1, A = 0.1, Rd = 0.1, P r = 0.7, Q = 0.1, Nb = 0.5, Nt = 0.1, Ec =
0.1, Sc = 1.2.

3.4.2 The Velocity, Temperature and Concentration Profiles

Figures 3.2-3.4 present the impact of the magnetic parameter on the velocity, tem-

perature and concentration distributions. The larger estimation of M decelerate

the velocity and escalate the temperature and concentration of the fluid. This

stems from the fact that an opposing force is generated by the magnetic field,

generally referred as the Lorentz force, which depresses the motion of the fluid re-

sulting in a decrement in the momentum boundary layer thickness and heightens

the thermal and concentration boundary layer thickness.

Figures 3.5-3.7 are delineated to show the effect of A on the velocity, tempera-

ture and concentration distributions. An enhancement in the flow velocity has

been observed for A > 1. On the other hand, the velocity reduces for the case
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A < 1. Also, both the temperature and concentration profiles decrease when A

assumes the larger value. As the value of A heightens, the heat transfer from the

sheet to the fluid becomes smaller and as a result, the temperature falls signifi-

cantly. Furthermore, the thermal boundary layer thickness is reduced. Moreover,

the concentration boundary layer thickness also shows a declining behaviour.

Figures 3.8-3.10 are framed to delineate the effect of Casson parameter on the

velocity, temperature and concentration fields. The velocity profile shows an in-

creasing trend by increasing β. Additionally, the velocity boundary layer thickness

undergoes a decrement as β assumes the larger value. This stems from the fact

that the plasticity of the Casson fluid increases for the smaller β and leads to an

enhancement in the momentum boundary layer thickness. Also, the temperature

distribution can be seen to rise for the increasing values of β. Further to this, the

thermal boundary thickness is strengthened. A rise in the nanoparticle volume

fraction has been observed for the higher estimation of β and the concentration

boundary layer thickness is enhanced.

Figures 3.11-3.12 are framed to delineate the outcome of Pr on the temperature

and concentration distributions. Since Pr is directly proportionate to the viscous

diffusion rate and inversely related to the thermal diffusivity, so the thermal diffu-

sion rate suffers a reduction for the larger estimation of Pr and subsequently, the

temperature of the fluid drops significantly. Moreover, a decrement in the ther-

mal boundary layer thickness has been noted. However, the nanoparticle volume

fraction of the fluid can be remarked to escalates for the higher values of Pr. In

addition to that, an increment can be seen in the concentration boundary layer
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thickness.

The outcome of Ec on the velocity and temperature profiles has been character-

ized through Figures 3.13-3.14. Physically, the Eckert number depicts the relation

between the kinetic energy of the fluid particles and the boundary layer enthalpy.

The kinetic energy of the fluid particles rises as Ec assumes the larger values.

Hence, the velocity and temperature of the fluid climbs marginally and therefore,

the associated momentum and thermal boundary layer thickness are enhanced.

Figures 3.15-3.16 elucidate the effect of the radiation parameter Rd and the heat

generation or absorption parameter Q on the temperature distributions. Since

the heat transfer climbs marginally for the higher estimation of Rd, thereby an

increment in the temperature of the fluid and the thermal boundary layer has been

noticed. However, as the value of Q rises, more heat is generated causing an incre-

ment in the temperature and the thermal boundary layer thickness. On the other

hand, as the value of Q de-escalates , the heat absorbed results in a decrement in

the temperature and the associated thermal boundary layer thickness.

Figures 3.17-3.18 delineate the outcome of Sc and γ on the concentration fields.

The concentration of the fluid depicts a decreasing behaviour as Sc assumes the

higher value. This behaviour stems from the fact that the Schmidt number and

mass diffusion rate have inverse relation, therefore, for the larger Sc, the process of

the mass diffusivity slows down and thus, the concentration falls and the concen-

tration boundary layer thickness is reduced. Furthermore, the chemical reaction
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parameter also has a similar effect on the concentration profile. The larger val-

ues of γ result in a decrement in the chemical molecular diffusion and hence, the

concentration of the fluid de-escalates and the associated concentration boundary

layer thickness is reduced.

Figures 3.19-3.20 interpret the impact of the thermophoresis parameter on the

temperature and concentration distributions. Both the temperature and concen-

tration escalate by taking larger values of Nt into account. In addition to this, an

increment in the associated thermal and concentration boundary layer has been

noticed.

Figures 3.21-3.22 display the influence of the Brownian motion parameter on

the temperature and concentration distributions. The temperature profile climbs

marginally for the larger values of Nb. This happens due to the reason that as the

value of Nb rises, the movement of the nanoparticles enhances significantly which

triggers the kinetic energy of the nanoparticles and eventually, the temperature

enhances and the thermal boundary layer thickness is magnified. On the other

hand, the concentration of the fluid falls as Nb assumes the higher values. Also,

the concentration boundary layer thickness is depressed.

The impact of the thermal Biot number on the temperature distribution and the

concentration Biot number on the nanoparticle volume fraction has been portrayed

by Figures 3.23-3.24. It is remarkable that the temperature can be observed as an

increasing function of Bi1 and the concentration of the fluid also enhances as Bi2

heightens. Further to this, the associated thermal and concentration boundary
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layer thickness are enhanced.

Figure 3.2: Effect of M on f ′(η)

Figure 3.3: Effect of M on θ(η)
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Figure 3.4: Effect of M on φ(η)

Figure 3.5: Effect of A on f
′
(η)
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Figure 3.6: Effect of A on θ(η)

Figure 3.7: Effect of A on φ(η)
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Figure 3.8: Effect of β on f ′(η)

Figure 3.9: Effect of β on θ(η)
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Figure 3.10: Effect of β on φ(η)
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Figure 3.11: Effect of Pr on θ(η)
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Figure 3.12: Effect of Pr on φ(η)

Figure 3.13: Effect of Ec on f ′(η)
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Figure 3.14: Effect of Ec on θ(η)

Figure 3.15: Effect of Rd on θ(η)
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Figure 3.16: Effect of Q on θ(η)
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Figure 3.17: Effect of Sc on φ(η)
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Figure 3.18: Effect of γ on φ(η)

Figure 3.19: Effect of Nt on θ(η)
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Figure 3.20: Effect of Nt on φ(η)

Figure 3.21: Effect of Nb on θ(η)
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Figure 3.22: Effect of Nb on φ(η)

Figure 3.23: Effect of Bi1 on θ(η)
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Figure 3.24: Effect of Bi2 on φ(η)



Chapter 4

MHD Stagnation Point Carreau

Nanofluid Flow over a Radially

Stretching Sheet

4.1 Introduction

The numerical investigation on the flow of Carreau nanofluid past a radially

stretching sheet close to a stagnation point along with convective boundary con-

ditions has been taken into account. Moreover, the radiation effects and magnetic

field are examined. In addition to this, the effects of heat generation/absorption

are also explored. The conversion of non-linear partial differential equations de-

scribing the proposed flow problem to a set of ordinary differential equations has

been carried out by employing appropriate similarity transformations. The nu-

merical solution of the proposed flow equations is derived by the shooting method.

64
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The impact of pertinent flow parameters on the non-dimensional velocity, tem-

perature and concentration profiles has been illustrated via tables and graphs.

The limiting case of the present study affirms that the obtained numerical results

reflect a very good agreement with those from open literature.

4.2 Mathematical Modeling

The present model aims to investigate the laminar, incompressible and steady

flow of the Carreau nanofluid past a radially stretched surface nearby a stagna-

tion point. In the light of the thermal radiation and heat generation/absorption,

the characteristics of flow and heat transfer have been examined. The coordinate

system is chosen in such a way that r− axis is along the flow whereas z−axis is

perpendicular to the flow. The velocity of the outer flow is taken as Ue. Further-

more, the direction of the uniform magnetic field is chosen in such a manner that

it is normal to the surface of the fluid flow. The effects of Brownian motion and

thermophoresis have been elaborated. Moreover, the convective surface conditions

have been taken into consideration. The geometry of the problem is similar to that

discussed in chapter 3. The constitutive equations of the Carreau nanofluid model

are as follow [36]:

∂u

∂r
+
u

r
+
∂w

∂z
= 0, (4.1)

u
∂u

∂r
+ w

∂u

∂z
= νf

∂2u

∂z2

[
1 + Γ2

(
∂u

∂z

)2
]n−1

2

+ νf (n− 1) Γ2∂
2u

∂z2

(
∂u

∂z

)2

[
1 + τ 2

(
∂u

∂z

)2
]n−3

2

+ Ue
dUe
dr
− σB0(u− Ue)

ρf
, (4.2)
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u
∂T

∂r
+ w

∂T

∂z
= αf

∂2T

∂z2
+ τ

[
DB

∂C

∂z

∂T

∂z
+
DT

T∞

(
∂T

∂z

)2
]

+
Q0 (T − T∞)

(ρcp)f(
∂u

∂z

)2

+
σB2

0 (u− Ue)2

(ρcp)f
− 1

(ρcp)f

∂qr
∂z

, (4.3)

u
∂C

∂r
+ w

∂C

∂z
= DB

∂2C

∂z2
+
DT

T∞

∂2T

∂z2
− Cr (C − C∞) . (4.4)

The corresponding conditions at the boundary surface are

u = Uw = ar, w = 0, −kf
∂T

∂z
= hh (Tf − T ) , DB

∂C

∂z
= −hs (Cf − C) at z = 0,

u→ Ue = br, T → T∞, C → C∞ as z →∞. (4.5)

The following similarity variables are taken into consideration.

η =

√
a

νf
z, u = arf ′ (η) , w = −2

√
aνff (η) , θ (η) =

T − T∞
Tf − T∞

, φ (η) =
C − C∞
Cf − C∞

.

(4.6)

The Rosseland approximation has been considered for the radiation. For smaller

value of temperature contrast, the temperature difference T 4 might be expanded

about T∞ using Taylor series and ignoring the higher order terms, the formulae

for the radiative heat flux qr is stated below.

∂qr
∂z

= −16σ∗T 3
∞

3k∗
∂2T

∂z2
. (4.7)

The detailed procedure for the verification of the continuity equation (4.1) has

been discussed in Chapter 3.

Now equation (4.2) will be converted into the dimensionless form. The left hand
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side of equation (4.2) can be written as:

u
∂u

∂r
+ w

∂u

∂z
= a2rf ′2 (η)− 2ra2f (η) f ′′ (η)

= a2r
(
f ′2 (η)− 2f (η) f ′′ (η)

)
. (4.8)

Furthermore, the first and second expressions on the right hand side of equation

(4.2) have been transformed into the dimensionless form as stated below.

νf
∂2u

∂z2

[
1 + Γ2

(
∂u

∂z

)2 ]n−1
2

+ νf (n− 1) Γ2∂
2u

∂z2

(
∂u

∂z

)2
[

1 + Γ2

(
∂u

∂z

)2
]n−3

2

= νf
a2

νf
rf ′′′ (η)

[
1 + Γ2a

3r2

νf
f ′′2 (η)

]n−1
2

+ νf (n− 1) Γ2 a
2

νf
rf ′′′ (η)

a3r2

νf
f ′′2 (η)

[
1 + Γ2a

3r2

νf
f ′′2 (η)

]n−3
2

= a2rf ′′′ (η)
([

1 + Γ2a
3r2

νf
f ′′2 (η)

]n−1
2

+ (n− 1)Γ2a
3r2

νf
f ′′2 (η)

[
1 + Γ2a

3r2

νf
f ′′2 (η)

]n−3
2
)

= a2rf ′′′ (η)
([

1 +We2f ′′2 (η)
]n−1

2 + (n− 1)We2f ′′2 (η)
[
1 +We2f ′′2 (η)

]n−3
2

)
= a2rf ′′′ (η)

[
1 +We2f ′′2 (η)

]n−3
2

(
[1 +We2f ′′2 (η)]

n−1
2

[1 +We2f ′′2 (η)]
n−3
2

+ (n− 1)We2f ′′2 (η)

)
= a2rf ′′′ (η)

[
1 +We2f ′′2 (η)

]n−3
2
( [

1 +We2f ′′2 (η)
](n−1

2
−n−3

2 )

+ (n− 1)We2f ′′2 (η)
)

= a2rf ′′′ (η)
[
1 +We2f ′′2 (η)

]n−3
2
( [

1 +We2f ′′2 (η)
]n−1−n+3

2

+ (n− 1)We2f ′′2 (η)
)

= a2rf ′′′ (η)
[
1 +We2f ′′2 (η)

]n−3
2
( [

1 +We2f ′′2 (η)
]

+ (n− 1)We2f ′′2 (η)
)

= a2rf ′′′ (η)
[
1 +We2f ′′2 (η)

]n−3
2
(
1 +We2f ′′2 (η) + nWe2f ′′2 (η)−We2f ′′2 (η)

)
= a2rf ′′′ (η)

[
1 +We2f ′′2 (η)

]n−3
2
[
1 + nWe2f ′′2 (η)

]
. (4.9)



MHD Stagnation Point Carreau Nanofluid Flow over a Radially Stretching Sheet 68

On the similar note, conversion of the remaining terms of the right hand side of

equation (4.2) into the dimensionless form has been stated below.

Ue
dUe
dr
− σB2

0

ρ
(u− Ue)

= b2r − σB2
0

ρ

(
ar

(
f ′ (η)− b

a

))
= b2r − σarB2

0

ρ

(
f ′ (η)− b

a

)
= a2r

[
b2

a2
− σB2

0

aρ

(
f ′ (η)− b

a

)]
. (4.10)

Now using equations (4.9) and (4.10), the right hand side of equation (4.2) can be

written as:

νf
∂2u

∂z2

[
1 + Γ2

(
∂u

∂z

)2
]n−1

2

+ νf (n− 1) Γ2∂
2u

∂z2

(
∂u

∂z

)2
[

1 + τ 2
(
∂u

∂z

)2
]n−3

2

+ Ue
dUe
dr
− σB0(u− Ue)

ρf

= a2rf ′′′ (η)
[
1 +We2f ′′2 (η)

]n−3
2
[
1 + nWe2f ′′2 (η)

]
+ a2r

(
A2 −M2 (f ′ (η)− A)

)
= a2r

([
1 +We2f ′′2 (η)

]n−3
2
[
1 + nWe2f ′′2 (η)

]
f ′′′ (η) + A2 −M2 (f ′ (η)− A)

)
(4.11)

The detailed procedure for the conversion of equations (4.3)-(4.4) and boundary

conditions into the dimensionless form is similar to that discussed in chapter 3.

Finally, the ODEs describing the proposed flow problem can be re-collected in the
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following system.

[
1 + nWe2 (f ′′)

2
] [

1 +We2 (f ′′)
2
]n−3

2
f ′′′ + 2ff ′′ − f ′2 + A2

−M2 (f ′ − A) = 0, (4.12)(
1 +

4

3
Rd

)
θ′′ + PrNbθ′φ′ + PrNtθ′2 + 2Prfθ′ + PrQθ

+ PrEcM2 (f ′ − A)
2

= 0, (4.13)

φ′′ +
Nt

Nb
θ′′ + Sc (2fφ′ − γφ) = 0. (4.14)

The transformed boundary conditions are stated below.

f (0) = 0, f ′ (0) = 1,

θ′ (0) = −Bi1 (1− θ (0)) , φ′ (0) = −Bi2 (1− φ (0)) ,

f ′ → A, θ → 0, φ→ 0 as η →∞.


(4.15)

The dimensional form of skin-friction coefficient, Nusselt number and Sherwood

number is formulated as follows:

Cf =
τw
ρfU2

w

, Nu =
rqw

kf (Tf − T∞)
, Sh =

rqm
DB (Cf − C∞)

. (4.16)

Given below are the formulae for τw, qw and qm.

τw = µ

(
∂u

∂z

)
z=0

[
1 + Γ2

(
∂u

∂z

)2
]n−1

2

z=0

, qw = −kf
[(

∂T

∂z

)
− qr
kf

]
z=0

,

qm = −DB

(
∂C

∂z

)
z=0

. (4.17)
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The transformation of the above formulae into the dimensionless form has been

carried out as:

• τw = µ

(
∂u

∂z

)
z=0

[
1 + Γ2

(
∂u

∂z

)2
]n−1

2

z=0

= µ

(
ar

√
a

νf
f ′′ (0)

)[
1 + Γ2a

3r2

νf
f ′′

2

(0)

]n−1
2

= µar

√
a

νf
f ′′ (0)

[
1 +We2f ′′

2

(0)
]n−1

2
. (4.18)

• qw = −kf
[(

∂T

∂z

)
− qr
kf

]
z=0

= −kf
[√

a

νf
(Tf − T∞) θ′ (0)−

(
−16σ∗T 3

∞
3kfk∗

√
a

νf
(Tf − T∞) θ′ (0)

)]
= −kf

√
a

νf
(Tf − T∞)

[
1 +

4

3

(
4σ∗T 3

∞
kfk∗

)]
θ′ (0)

= −kf
√

a

νf
(Tf − T∞)

[
1 +

4

3
Rd

]
θ′ (0) . (4.19)

• qm = −DB

(
∂C

∂z

)
z=0

= −DB

√
a

νf
(Cf − C∞)φ′ (0) . (4.20)

Incorporating equation (4.28), (4.29) and (4.30) in equation (4.26), we get the fol-

lowing dimensionless form for skin-friction coefficient, Nusselt number and Sher-

wood number.

• Cf =
τw
ρfU2

w

=
µar
√

a
νf
f ′′ (0)

[
1 +We2f ′′

2
(0)
]n−1

2

ρfa2r2

=
1

r

√
νf
a
f ′′ (0)

[
1 +We2f ′′

2

(0)
]n−1

2

= Re−
1
2f ′′ (0)

[
1 +We2f ′′

2

(0)
]n−1

2
.
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⇒ Re
1
2Cf = f ′′ (0)

[
1 +We2f ′′

2

(0)
]n−1

2
. (4.21)

• Nu =
rqw

kf (Tf − T∞)

=
−rkf

√
a
νf

(Tf − T∞)
[
1 + 4

3
Rd
]
θ′ (0)

kf (Tf − T∞)

= −r
√

a

νf

[
1 +

4

3
Rd

]
θ′ (0)

= −Re
1
2

[
1 +

4

3
Rd

]
θ′ (0) .

⇒ Re−
1
2Nu = −

[
1 +

4

3
Rd

]
θ′ (0) .

• Sh =
rqm

DB (Cf − C∞)

=
−rDB

√
a
νf

(Cf − C∞)φ′ (0)

DB (Cf − C∞)

= −r
√

a

νf
φ′ (0)

= −Re
1
2φ′ (0) .

⇒ Re−
1
2Sh = −φ′ (0) , (4.22)

where Re =
rUw
νf

elucidates the local Reynolds number and νf =
µ

ρ
the kinematic

viscosity.

4.3 Solution Methodology

In order to solve the system of ODEs (4.22)-(4.24) subject to the boundary con-

ditions (4.25), the shooting method has been used. Primarily equation (4.22) is

solved numerically and then the computed results of f , f ′ and f ′′ are used in equa-

tions (4.23)-(4.24). For the numerical treatment of equation (4.22), the missing

initial condition f ′′ (0) has been denoted as s and the following notations have
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been considered.

f = h1, f
′ = h2, f

′′ = h3,
∂f

∂s
= h4,

∂f ′

∂s
= h5,

∂f ′′

∂s
= h6 (4.23)

Using the above notations, equation (4.22) can be converted into a system of three

first order ODEs. First three of the following ODEs correspond to (4.22) and the

other three are obtained by differentiating the first three w.r.t s.

h′1 = h2, h1(0) = 0,

h′2 = h3, h2(0) = 1,

h′3 =
h22 +M2 (h2 − A)− 2h1h3 − A2

(1 + nWe2h23) (1 +We2h23)
n−3
2

, h3(0) = s,

h′4 = h5, h4(0) = 0,

h′5 = h6, h5(0) = 0,

h′6 =
1

(1 + nWe2h23)
2

(1 +We2h23)
n−3[ [

1 + nWe2h23
] [

1 +We2h23
]n−3

2
[(

2h2 +M2
)
h5 − 2 (h1h6 + h3h4)

]
−
(
h22 +M2 (h2 − A)− 2h1z3 − A2

) [
1 +We2h23

]n−5
2 (2We2h3h6)(

n− 3

2

[
1 + nWe2h23

]
+ n

[
1 +We2h23

]−1)]
, h6(0) = 1.

The RK-4 method has been used to solve the above initial value problem. In order

to get the approximate numerical results, the problem’s domain is considered to

be bounded i.e. [0, η∞], where η∞ is chosen to be an appropriate finite positive real

number in such a way that the variation in the solution for η > η∞ is ignorable.

The missing condition for the above system of equations is to be chosen such that

(h2(η∞))s = A. This algebraic equation has been solved by using the Newton’s
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method governed by the following iterative formula.

s(n+1) = s(n) − (h2(η∞)) s=s(n) − A(
∂h2(η∞)

∂s

)
s=s(n)

.

⇒ s(n+1) = s(n) − (h2(η∞)) s=s(n) − A
(h5(η∞))s=s(n)

. (4.24)

The stopping criteria for the shooting method is set as

| (h2(η∞)) s=s(n) − A| < ε, (4.25)

for some very small positive number ε.

For the numerical treatment of equations (4.23) and (4.24), the similar procedure

has been followed as discussed in Chapter 3.

4.4 Results with Discussions

In this section, the numerical values of skin-friction coefficient, Nusselt and Sher-

wood numbers are illustrated by tables and graphs by assuming various values of

different physical parameters of interest.

4.4.1 Skin-friction Coefficient, Nusselt and Sherwood Numbers

To validate the MATLAB code, the values of −f ′′(0) and −θ′(0) are reproduced

for the problem discussed by Dianchen et al. [36]. Table 4.1 reflects a very good
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agreement between the results computed by the present code and those of Di-

anchen et al. [36].

Tables 4.2-4.3 disclose the numerical results of the skin-friction coefficient, Nusselt

and sherwood numbers for the present model in regards to a change in the values

of various parameters like n, We, A, M , Rd, Pr, Q, Nb, Nt, Ec, Sc, γ, Bi1 and

Bi2.

f ′′(0) with We = 0, n = 1

M2 Dianchen et al.[36] Present

0.0 -1.173720 -1.173733759

0.5 -1.365814 -1.365815468

1.0 -1.535709 -1.535710609

2.0 -1.830490 -1.870040277

3.0 -2.084846 -2.3083441658

Table 4.1: Comparison of the present results of f ′′(0) with those reported by Dianchen
et al. [36].

For the larger values of n and A, the skin-friction coefficient depresses whereas the

heat and mass transfer rates climb marginally. The skin-friction coefficient, Nus-

selt and Sherwood numbers are enhanced as We assumes the higher values. A rise

in the value of M depreciates the Nusselt number whereas the skin-friction coeffi-

cient and Sherwood number increase significantly. Both the Nusselt and Sherwood

numbers increase with an escalation in the value of Rd, Sc and γ.

As the value of Q, Pr and Bi1 rise, the Nusselt number is enhanced whereas
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the Sherwood number shows a declining behaviour. A decrement in the heat and

mass transfer rates has been observed for the higher estimation of of Nb, Ec and

n We A M Rd Pr Nb Nt Q Ec −a1f ′′(0) −a2θ′(0) −φ′(0)

1.5 0.05 0.1 1.0 0.1 0.7 0.5 0.1 0.1 0.1 1.4382 0.093158 0.093391

2.0 1.4296 0.093161 0.093392

2.5 1.4274 0.093163 0.093393

2.0 3.1754 0.094621 0.093585

4.0 4.5149 0.095321 0.093697

0.2 1.3216 0.094145 0.093459

0.3 1.1928 0.094389 0.093538

1.2 1.5573 0.093791 0.093858

1.4 1.6879 0.091504 0.093960

0.2 1.4382 0.102877 0.093406

0.3 1.4382 0.112401 0.093409

1.0 1.4382 0.096244 0.093348

2.0 1.4382 0.100356 0.093279

0.6 1.4382 0.093109 0.093424

0.7 1.4382 0.093059 0.093447

0.2 1.4382 0.093065 0.093214

0.3 1.4382 0.092969 0.093042

1.0 1.4382 0.105005 0.093307

2.0 1.4382 0.111079 0.093031

0.5 1.4382 0.083702 0.093799

1.0 1.4382 0.071850 0.094308

Table 4.2: The computed results of skin-friction coefficient, Nusselt and Sherwood

numbers for Sc = 1.2, γ = 1, Bi1 = 0.1 = Bi2, where a1 =
[
1 +We2f ′′

2

(0)
]n−1

2

and

a2 =
(
1 + 4

3Rd
)
.
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Sc γ Bi1 Bi2 −a1f ′′(0) −a2θ′(0) φ′(0)

1.2 1.0 0.1 0.1 1.4382 0.093158 0.093391

1.4 1.4382 0.093172 0.093909

1.6 1.4382 0.093183 0.094323

1.5 1.4382 0.093182 0.094194

2.0 1.4382 0.093199 0.094756

0.2 1.4382 0.160826 0.093193

0.3 1.4382 0.212083 0.093043

0.2 1.4382 0.092941 0.175524

0.3 1.4382 0.092747 0.248316

Table 4.3: The computed results of skin-friction coefficient, Nusselt and Sherwood
numbers for n = 1.5,We = 0.05,M = 1, A = 0.1, Rd = 0.1, P r = 0.7, Q = 0.1, Nb =

0.5, Nt = 0.1, Ec = 0.1, where a1 =
[
1 +We2f ′′

2

(0)
]n−1

2

and a2 =
(
1 + 4

3Rd
)
.

Sc γ Bi1 Bi2 Jf Jθ Jφ

1.2 1.0 0.1 0.1 [-1.4, -1.3] [-1, 150] [-1, 150]

1.4 [-1.4, -1.3] [1, 150] [1, 150]

1.6 [-1.4, -1.3] [1, 150] [1, 150]

1.5 [-1.4, -1.3] [1, 130] [1, 130]

2.0 [-1.4, -1.3] [1, 50] [1, 50]

0.2 [-1.4, -1.3] [1, 100] [1, 100]

0.3 [-1.4, -1.3] [1, 110] [1, 110]

0.2 [-1.4, -1.3] [1, 120] [1, 120]

0.3 [-1.4, -1.3] [1, 130] [1, 130]

Table 4.4: The intervals for the initial guesses for the missing initial conditions when
n = 1.5,We = 0.05,M = 1, A = 0.1, Rd = 0.1, P r = 0.7, Q = 0.1, Nb = 0.5, Nt =
0.1, Ec = 0.1.
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n We A M Rd Pr Nb Nt Q Ec Jf Jθ Jφ

1.5 0.05 0.1 1.0 0.1 0.7 0.5 0.1 0.1 0.1 [-1.4, -1.3] [-1, 150] [-1, 150]

2.0 [-1.4, -1.3] [-1, 150] [-1, 150]

2.5 [-1.4, -1.3] [-1, 160] [-1, 160]

2.0 [-0.9, -0.8] [-1, 165] [-1, 165]

4.0 [-0.7,-0.6] [-1, 175] [-1, 175]

0.2 [-1.3, -1.2] [-1, 180] [-1, 180]

0.3 [-1.2, -1] [-1, 195] [-1, 195]

1.2 [-1.5, -1.4] [-1, 150] [-1, 150]

1.4 [-1.6, -1.5] [-1, 150] [-1, 150]

0.2 [-1.4, -1.3] [1, 160] [1, 160]

0.3 [-1.4, -1.3] [1, 160] [1, 160]

1.0 [-1.4, -1.3] [1, 170] [1, 170]

2.0 [-1.4, -1.3] [1, 130] [1, 130]

0.6 [-1.4, -1.3] [1, 90] [1, 90]

0.7 [-1.4, -1.3] [1, 140] [1, 140]

0.2 [-1.4, -1.3] [1, 120] [1, 120]

0.3 [-1.4, -1.3] [1, 160] [1, 160]

1.0 [-1.4, -1.3] [1, 150] [1, 150]

2.0 [-1.4, -1.3] [1, 140] [1, 140]

0.5 [-1.4, -1.3] [1, 120] [1, 120]

1.0 [-1.4, -1.3] [1, 160] [1, 160]

Table 4.5: The intervals for the initial guesses for the missing initial conditions when
γ = 1, Bi1 = 0.1 = Bi2.
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Bi2, the heat transfer rate falls, however, the mass transfer rate rises. Tables

4.4-4.5 portray the intervals Jf , Jθ and Jφ where from the missing initial condi-

tions f ′′(0), θ′(0) and φ′(0) respectively can be chosen. It is noteworthy that the

intervals mentioned offer a considerable flexibility for the choice of initial guesses.

4.4.2 The Velocity, Temperature and Concentration Profiles

The graphs illustrated in this section show the behaviour of the velocity, temper-

ature and concentration for the present model in regards to a change in the values

of various parameters like n, We, A, M , Rd, Pr, Q, Nb, Nt, Ec, Sc, γ, Bi1 and

Bi2.

Figures 4.2-4.4 are framed to delineate the impact of n on the velocity, tem-

perature and concentration profiles. The velocity, temperature and concentration

distributions can be seen to depress as the larger values of n are taken into ac-

count. In addition, a decrement has been observed in the momentum, thermal

and concentration boundary layer thickness.

The effect of the Weissenberg number on the velocity, temperature and concen-

tration fields has been displayed through Figures 4.5-4.7. The velocity can be

seen to decerates while the temperature and concentration escalate for the higher

estimation of We, that bring about a decrement in the momentum boundary layer

thickness whereas an escalation in the thermal and concentration boundary layer

thickness has been noticed.
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Figures 4.8-4.10 are sketched to show the impact of A on the velocity, temperature

and concentration distributions. An enhancement in the flow velocity has been ob-

served for A > 1. On the other hand, the velocity de-escalates for the case A < 1.

Also, both the temperature and concentration profiles decrease when A assumes

the larger value. As the value of A heightens, the heat transfer from the sheet to

the fluid becomes smaller and as a result, the temperature falls. Furthermore, the

thermal boundary layer thickness is reduced. Moreover, the concentration bound-

ary layer thickness also shows a declining behaviour.

Figures 4.11-4.13 present the impact of the magnetic parameter on the veloc-

ity, temperature and concentration profiles. The higher values of M decelerate the

velocity and increase the temperature and concentration of the fluid. This stems

from the fact that an opposing force is generated by the magnetic field, generally

referred as the Lorentz force, which depresses the motion of the fluid resulting in a

decrement in the momentum boundary layer thickness and heightens the thermal

and concentration boundary layer thickness.

Figures 3.11-3.12 are framed to delineate the effect of Pr on the temperature

and concentration distributions. Since Pr is directly proportionate to the viscous

diffusion rate and inversely related to the thermal diffusivity, so the thermal diffu-

sion rate suffers a reduction for the larger estimation of Pr and subsequently, the

temperature of the fluid drops significantly. Moreover, a decrement in the ther-

mal boundary layer thickness has been noted. However, the nanoparticle volume

fraction of the fluid can be remarked to escalates for the higher values of Pr. In
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addition to that, an increment can be seen in the concentration boundary layer

thickness.

The outcome of Ec on the velocity and temperature profiles has been character-

ized through Figures 3.13-3.14. Physically, the Eckert number depicts the relation

between the kinetic energy of the fluid particles and the boundary layer enthalpy.

The kinetic energy of the fluid particles rises as Ec assumes the larger values.

Hence, the velocity and temperature of the fluid climb marginally and therefore,

the associated momentum and thermal boundary layer thickness are enhanced.

Figures 3.15-3.16 elucidate the effect of the radiation parameter Rd and the heat

generation or absorption parameter Q on the temperature distributions. Since

the heat transfer climbs marginally for the higher estimation of Rd, thereby an

increment in the temperature of the fluid and the thermal boundary layer has been

noticed. However, as the value of Q rises, more heat is generated causing an incre-

ment in the temperature and the thermal boundary layer thickness. On the other

hand, as the value of Q de-escalates , the heat absorbed results in a decrement in

the temperature and the associated thermal boundary layer thickness.

Figures 3.17-3.18 delineate the effect of Sc and γ on the concentration fields. The

concentration of the fluid depicts a decreasing behaviour as Sc assumes the higher

value. This behaviour stems from the fact that the Schmidt number and mass

diffusion rate have inverse relation, therefore, for the larger Sc, the process of the

mass diffusivity slows down and thus, the nanoparticle volume fraction falls and
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the concentration boundary layer thickness is reduced. Furthermore, the chemi-

cal reaction parameter also has a similar effect on the concentration profile. The

larger values of γ result in a decrement in the chemical molecular diffusion and

hence, the concentration of the fluid de-escalates and the associated concentration

boundary layer thickness is reduced.

Figures 4.22-4.23 interpret the impact of the thermophoresis parameter on the

temperature and concentration distributions. Both the temperature and concen-

tration escalate by taking larger values of Nt into account. In addition to this, an

increment in the associated thermal and concentration boundary layer thickness

has been noticed.

Figures 3.21-3.22 display the influence of the Brownian motion parameter on

the temperature and concentration distributions. The temperature profile climbs

marginally for the larger values of Nb. This happens due to the reason that as

the value of Nb rises, the movement of the nanoparticles enhances significantly

which triggers the kinetic energy of the nanoparticles resulting in an escalation in

the temperature and the thermal boundary layer thickness. On the other hand,

the concentration of the fluid falls as Nb assumes the higher values. Also, the

concentration boundary layer thickness is depressed.

The effect of the thermal Biot number on the temperature distribution and the

concentration Biot number on the nanoparticle volume fraction has been portrayed

by Figures 4.26-4.27. It is remarkable that the temperature can be observed as an

increasing function of Bi1 and the concentration of the fluid also enhances as Bi2
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heightens. Further to this, the associated thermal and concentration boundary

layer thickness are enhanced.

Figure 4.1: Effect of n on f ′(η)

Figure 4.2: Effect of n on θ(η)
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Figure 4.3: Effect of n on φ(η)

Figure 4.4: Effect of We on f ′(η)
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Figure 4.5: Effect of We on θ(η)

Figure 4.6: Effect of We on φ(η)
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Figure 4.7: Effect of A on f ′(η)

Figure 4.8: Effect of A on θ(η)
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Figure 4.9: Effect of A on φ(η)

Figure 4.10: Effect of M on f ′(η)
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Figure 4.11: Effect of M on θ(η)

Figure 4.12: Effect of M on φ(η)
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Figure 4.13: Effect of Pr on θ(η)

Figure 4.14: Effect of Pr on φ(η)
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Figure 4.15: Effect of Ec on f ′(η)

Figure 4.16: Effect of Ec on θ(η)
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Figure 4.17: Effect of Rd on θ(η)

Figure 4.18: Effect of Q on θ(η)
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Figure 4.19: Effect of Sc on φ(η)

Figure 4.20: Effect of γ on φ(η)
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Figure 4.21: Effect of Nt on θ(η)

Figure 4.22: Effect of Nt on φ(η)
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Figure 4.23: Effect of Nb on θ(η)

Figure 4.24: Effect of Nb on φ(η)
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Figure 4.25: Effect of Bi1 on θ(η)

Figure 4.26: Effect of Bi2 on φ(η)



Chapter 5

Conclusion

The numerical investigation of the MHD flow nearby a stagnation point over a ra-

dially stretching sheet using the Casson and Carreau nanofluids has been presented

in this thesis. Moreover, the radiation effects and magnetic field are examined. In

additon to this, the effects of heat generation/absorption are also explored. The

conversion of non-linear partial differential equations describing the proposed flow

problem to a set of ordinary differential equations has been carried out by em-

ploying appropriate similarity transformations. The shooting method is employed

for the numerical treatment. The impact of pertinent flow parameters on the non-

dimensional velocity, temperature and concentration profiles has been illustrated

in tabular and graphical forms. The conclusions drawn from the numerical results

are summarized below.

• The magnetic parameter decelerates the velocity whereas an opposite trend

has been observed for the temperature and concentration fields by considering

the Casson fluid. A similar finding has been observed for the Carreau fluid.
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• For the Casson fluid, the higher estimation of the Casson parameter escalates

the velocity, temperature and concentration profiles.

• The temperature falls whereas the concentration escalates for the larger es-

timation of the Prandtl number in view of the Casson and Carreau fluids.

• The Eckert number accelerates the velocity and the temperature profile

climbs marginally for the Casson fluid. Moreover, An identical outcome has

been concluded for the Carreau fluid.

• The heat and mass transfer rates climb significantly as the value of ther-

mophoresis parameter escalates, by considering the Casson and Carreau flu-

ids into account.

• For the Casson and Carreau fluids, the heat transfer rate escalates for the

radiation paramter.
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